22 research outputs found

    Localization in orchards using Extended Kalman Filter for sensor-fusion - A FroboMind component

    Get PDF
    Making an automated vehicle navigate in rows of orchards is a feature, relevant for automating the plant nursing and cultivation of the trees. To be able to navigate accurate and reliably, the vehicle must know its position relative to the trees in the orchards

    Towards Error Handling in a DSL for Robot Assembly Tasks

    Full text link
    This work-in-progress paper presents our work with a domain specific language (DSL) for tackling the issue of programming robots for small-sized batch production. We observe that as the complexity of assembly increases so does the likelihood of errors, and these errors need to be addressed. Nevertheless, it is essential that programming and setting up the assembly remains fast, allows quick changeovers, easy adjustments and reconfigurations. In this paper we present an initial design and implementation of extending an existing DSL for assembly operations with error specification, error handling and advanced move commands incorporating error tolerance. The DSL is used as part of a framework that aims at tackling uncertainties through a probabilistic approach.Comment: Presented at DSLRob 2014 (arXiv:cs/1411.7148

    Robot Motion and Tasking in Unknown Environments

    No full text

    Control of mobile manipulator using the dynamical systems approach

    Get PDF
    (c) 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Presented at the 2009 IEEE International Conference on Robotics and Automation; Kobe International Conference Center; Kobe, Japan, May 12-17, 2009.Digital Object Identifier : 10.1109/ROBOT.2009.5152231The combination of a mobile platform and a manipulator, known as a mobile manipulator, provides a highly flexible system, which can be used in a wide range of applications, especially within the field of service robotics. One of the challenges with mobile manipulators is the construction of control systems, enabling the robot to operate safely in potentially dynamic environments. In this paper we will present work in which a mobile manipulator is controlled using the dynamical systems approach. The method presented is a two level approach in which competitive dynamics are used both for the overall coordination of the mobile platform and the manipulator as well as the lower level fusion of obstacle avoidance and target acquisition behaviors
    corecore